A Regulatory Pathway, Ecdysone-Transcription Factor Relish-Cathepsin L, Is Involved in Insect Fat Body Dissociation
نویسندگان
چکیده
Insect fat body is the organ for intermediary metabolism, comparable to vertebrate liver and adipose tissue. Larval fat body is disintegrated to individual fat body cells and then adult fat body is remodeled at the pupal stage. However, little is known about the dissociation mechanism. We find that the moth Helicoverpa armigera cathepsin L (Har-CL) is expressed heavily in the fat body and is released from fat body cells into the extracellular matrix. The inhibitor and RNAi experiments demonstrate that Har-CL functions in the fat body dissociation in H. armigera. Further, a nuclear protein is identified to be transcription factor Har-Relish, which was found in insect immune response and specifically binds to the promoter of Har-CL gene to regulate its activity. Har-Relish also responds to the steroid hormone ecdysone. Thus, the dissociation of the larval fat body is involved in the hormone (ecdysone)-transcription factor (Relish)-target gene (cathepsin L) regulatory pathway.
منابع مشابه
Drosophila Calcineurin Promotes Induction of Innate Immune Responses
The sophisticated adaptive immune system of vertebrates overlies an ancient set of innate immune-response pathways, which have been genetically dissected in Drosophila. Although conserved regulatory pathways have been defined, calcineurin, a Ca(2+)-dependent phosphatase, has not been previously implicated in Drosophila immunity. Calcineurin activates mammalian immune responses by activating the...
متن کاملTransformation mapping of the regulatory elements of the ecdysone-inducible P1 gene of Drosophila melanogaster.
The transcription of the P1 gene is induced by 20-hydroxyecdysone in fat bodies of third-instar larvae. Germ line transformation showed that sequences between -138 to +276 contain elements required for a qualitatively correct developmental and hormonal regulation of P1 transcription. Sequences from -138 to -68 are essential for this expression.
متن کاملInhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway.
The Imd signaling cascade, similar to the mammalian TNF-receptor pathway, controls antimicrobial peptide expression in Drosophila. We performed a large-scale RNAi screen to identify novel components of the Imd pathway in Drosophila S2 cells. In all, 6713 dsRNAs from an S2 cell-derived cDNA library were analyzed for their effect on Attacin promoter activity in response to Escherichia coli. We id...
متن کاملCross-talk between the fat body and brain regulates insect developmental arrest.
Developmental arrest, a critical component of the life cycle in animals as diverse as nematodes (dauer state), insects (diapause), and vertebrates (hibernation), results in dramatic depression of the metabolic rate and a profound extension in longevity. Although many details of the hormonal systems controlling developmental arrest are well-known, we know little about the interactions between me...
متن کاملAlternative pathway of cell death in Drosophila mediated by NF-κB transcription factor Relish.
Photoreceptor cell death accompanying many retinal degenerative disorders results in irreversible loss of vision in humans. However, the precise molecular pathway that executes cell death is not known. Our results from a Drosophila model of retinal degeneration corroborate previously reported findings that the developmental apoptotic pathway is not involved in photoreceptor cell demise. By unde...
متن کامل